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. Abstract

The aeromechanical stability of a helicopter
in ground resonance was analyzed, by incorporating
five different aerodynamic modeis in the coupled
rotor/fuselage analysis. The sensitivity of the
results to changes in aerodynamic modelling was
carefully examined. The theoretical results were
compared with experimental data and useful con-
clusions are drawn regarding the role of aerodyna-
mic modeling on this aeromechanical stabilit;
problem. The aerodynamic model which provided the
best all around correlation with the experimen:al
data was identified,

Nomenclature
a - 1lift curve slope
C ~ 1ift deficiency factor
C1 - coefficient in inflow equations, C1 =
0.5 or 1.0
CT - Thrust coefficient

CMx'CMy - moment coefficients in roll and pitch

(L] - induced flow matrix

m - mass flow rate

M - rotor aerodynamic moment

Ml - apparent inertia

r - radial location of a typical blade
gection

R - rotor radius

8 - eigenvalue

dT - differential thrust

Bie2P1g - cyclic flap coordinates

ﬂP'BR - progressing and regressing flap modes

respectively

Y - Lock number

Y* - equivalent, reduced or effective Lock
number

Ao - steady or mean inflow

*This research was supported by NASA Grant NAG
2-209, funded by Ames Research Center, Moffett
Field, California

annmammm.m

e 1 S —r————
Sy | v Saliar N -

i ot i v

A - total inflow, A = X0+6A; also inflow
mode, in figures only

ALLA Als -~ inflow variables

1"71e?

8A - unsteady wake induced perturbational
inflow

w - modal frequency, imaginary part of s

Q - rotor R.P.lM,

¢ - body roll mode

¥ - azimuthal angle or nondimensional time
Y= Qt

p - density of air

o - modal damping, real part of s

o - solidity ratio

8 - body pitch mode

Gc - collective pitch setting of the blade

Clc’;ls - cyclic lag coordinates

CP’CR - progressing and regressing lag modes

respectively
1, Introduction

Unsteady aerodynamics have a significant in-
fluence on the aeroelastic and the aeromechanical
stability characteristics of helicopters. The
mathematical sophistication of refined unsteady
aerodynamic models is sometimes prohibitive to in-
corporate in the aeroelastic analyses and therefore
it is quite frequent that rotary-wins aeroelastic
analyses are based upon quaristeady aerodyramic
theory. Fortunately, there are some relatively
simple unsteady aerodynamic models, known as inflow
models, which can be conveniently incorporated in
the aeroelastic and aeromechanical studies of heli-
copters. These simple models are based upon the
definition of certain inflow parameters which re-
present essentially the unsteady wake-induced flow
through the rotor disk, A number of such inflow
models are available in the literature; however the
applicability of a particular model to a given rotor
dynamic problem and the sensitivity of the stability
boundaries to the choice of the inflow model and
comparisona with experimental data have not been
considered in detail in the literature., Bousman
has carried out an experimental study of the aero-
mechanical stability of a hingeless rotor supported
on a special gimbal which gimulated the pitch and
roll degrees of freedom, The availability of this
high quality experimental data provides an
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opportunity; (a) to test the validity of mathemati-
cal models representing the coupled rotor/fuselage
dynamics and (b) cu deiermine the influence of
various aerodyramic moaels on this aeromechanical
problem. Bousman attributed some of the discrepan-
cies, found hLetween the theoretical results present-
ed in his paper and the experimental results, to
dynamic inflow, This conclusion was examined by
Johnson?, in a recent study, where the unsteady
aerodynamic effects on the rotor were represented
by a dynamic inflow model3d. Johnson's® results
with the dynamic inflow modelds# indicated better
agreement with the experimental data than the
results obtained using the quasi-steady aerodynamic
model. Using the coupled rotor/body mode13:6 with
simple quasi-steady aerodynamics, the authors

also obtained good agreement with the experimental
results generated by Bousman®. Based on the agree-
ment with the experimental data, they concluded
that the coupled rotor/fuselage model developed,
was reliable.

The purpose of this study is to extend Ref. 7
and study the sensitivity of the results obtained
to changes in the aerodynamic assumpticns used.

To accomplish this objective, five different aero-
dynamic models were incorporated in the mathemati-
cal model representing the coupled rotor/fuselage
dynamics and the sensitivity of the stability
boundaries tc changes in aerodynamic modelling was
determined. The theoretical results were compared
with the experimental data and based on this com-
parison, conclusions are drawn regarding tk:c
selection of the parameters used in defining these
aerodynamic models,

2. Aerodynamic Models Used in the Analysis

The aerodynamic models, incorporated in this
aeromechanical stability study representing a
coupled rotor/fuselage system, were: (a) quasi-
steady aerodynamics, (b) two different perturbation
inflow models and (c) two different dynamic inflow
models. A brief description of these aerodynamic
models is provided below.

Quasi-steady Aerodynamic Model

The quasi-steady aerodynamic model, employed
in the analysis, is based on Greenberg's® formula-
tion of unsteady aerodynamic loads on an oscillatory
airfoil in a pulsating flow, Greenberg's theory
is a modified form of Theodorsen's uansteady aero-
dynamic theory. The quasi-steady model 1is obtained
by assuming C(k) = 1 and neglecting the apparent
mass terms (noncirculatory terms). In this model,
the assumption of C(k) = 1 implies that t:: unsteady
wake effects are totally neglecter

Inflow Models

The inflow models represent the unsteady wake
effects in a simple form. In these models, the
unsteady wake~-induced flow through the rotor disk
is defined by a set of inflow variables and these
variables essentially provide a corie:tion to the
inflow assumed in the quasi-steady aerodynami
theory., When inflow models are used in the analysis
of rotor dynamic problems the blade loads have to
be calculated from the quasi-steady aerodynamic
expressions., An importunt fact to be noted is that
the quasi-steady aerodynamic model is a two dimen-
sional local model and hence it is applied at a
typical cross section located at a spanwise station

208

along the rotor blade, in the blade fixed, rotating
coordinate system. On the other hand, the inflow
models represent the global effects of the un-
steady wake and therefore they are applicable to
the complete rotor. The various inflow models are
described below.

Perturbation Inflow Model

Prior to describing the perturbation inflow
model, it is useful to clarify certain aspects of
the terminology used in the literature which deals
with this subject, In some cases, the perturbation
inflow model is referred to as quasi-static inflow
model? and in other cases as quasi~steady inflow
model”.

The induced flow-field acting on a helicopter
rotor affects both rotor equilibrium (trim load-
in;;s) and rotor response (transient loading).
Therefore, it is reasonable to assume that the
induced flow will also be affected by the oscilla~
tions of the rotor. This assumption is the basis
of both the perturbation inflow models aad dynamic
inflow models. A detailed derivation of these
inflow models can be found in Refs. 3 and 9,

In these models the total induced velocity on
the rotor disk due to the wexe is assumed to con~-
sist of two parts: (1) a steady iuflow, A,, (for
trim loadings) and (2) a perturbation inflow, 8,
(for transient loadings). Therefore, the total
induced velocity normal to the rotor disk is ex-
pressed as

A = AO + 8 1)

Assuming that the perturbation inflow, §A, varies
azimuthally as well as linearly along the radius,
the total inflow can be written as

T

A= Xo + kl + ch r

r

cosp + Als 7 siny 2)
where the inflow variables A, Aj., Aj1g are func~
tions of time. These inflow variables are related
to the perturbational thrust, roll and pitch
moment coefficients through the following relation.

M Cq l
ch = ‘CMy ‘ (3)
Xls CMx P.A

where P,A stands for perturbational aerodynamics.
The elements of [L] can be obtained either theoreti-
cally, by using momentun theory 9 or experi-
mentallylo.

(L~

In ground resonance type of aeromechanical
problems, the inflow variable Ay does not couple
with the body and cyclic blade degrees of freedom
and hence it does not have to be considered in the
analysis. Thus only the equations for the inflow
variables Xj. and Aj, are relevant to this specific
problem and these can be written as

) Me “Cuy
fL)” - (4)
e CMux ) p.A



For axial flow through the roter, which cor-
respondsto the present case, the elements of [L]
can be obtained by applying momentum theory?, T-e
differential thrust on an elemental area dA
(= rdrdy) of the disk is related to the inflow by
the equaricn

dT = :; 2MQR (5)

It should be mentioned that by relating the total
differential thrust (steady and perturbation) to
the total induced velocity (steady and perturba-
tion) in the form, given 1a Eq. (5), it is assimed
that the thrust-inflow relation is the same for
steady as well as perturbational conditions. This
basic assumption implies that the variation of the

forces on the rotor is sufficiently slow so that the

classical actuator disk theory is valid for both
steady and perturbational inflow velocities.
Therefore, this inrlow theory is also recognized to
be a low frequency approximation tc the unsteady
aerodynamics of the rotor,

Following Johnscnz, the mass flow rate in
Eq. (5) can be written as

= pARAA (6)

It is important to note that the mass flow rate
is defined with respect to the steady or mean value
of the inflow Ag.

The aerodynamic pitch and roll moments on the
rotor disk, acting at the hub, can be obtained by
taking moments of the elemental thrust about the
hub center and integrating over the complete rotor
disk. The pitch and roll moments are

R p27 .
M = f f -r cosydT (7)
pitch 0o Jo

fR 2T
M = f r sinydT (8)
roll 0 0

Substituting Eqs. (2), (5) and (6) in Egs. (7) and
(8) and integrating,the pitch and roll moments
become

L 3 2
Mojeeh =7 PRApM (W) 9

T 3 2
M. o1 =7 PR AOXIS(QR) (10)

After nondimensionalization, the relation between
inflow variables and the perturbational aerodynamic
moment coefficients becomes

Yo
)

)\0 (11)
0 T Me Cux ) p.a

On the other hand, if the mass {low rate m, is de-
fined as (following Peters and Gaonkar9)

@ = pAfRdA (12)

where the mass flow is defined with respect to the
total induced velocity A, the inflow equations for
A1c and X1 become

AO 0 Alc -CMy
- (13)
0 AO Xls cMm P.A
Comparing Eqs. (11) and (13), it is evident that
depending on the definition of mass flow rate, i.e.

Eq. (6) or (12), the coeffig¢ients of the elements
of [L]-] matrix differ by a factor of two.

Equations (11) or (13) are complete only after
identifying the right hand side. This is done by
obtaining expressions for the moment coefficients
using blade element theory., Once these have been
obtained, a relation is established between the
inflow variables and rotor blade motion. It was
shown in Refs, 3, 9 and 11 that incorporation of
a perturbational inflow model, as represented by
Eq. (11) or (13), in rotor dynamic problems yields
a modification of the aerodynamic loads acting
on the blade which can be represented by a reduced
or effective Lock number

X
Yy = Cy (14)

I1f Eq. (11) is used in the rotor dynamic problem,
the 1ift deficiency factor C becomes

1

Ja
1+ 3

8,

Cc= (15)

This factor is found to be equal to the low fre~
quency approximation of Loewy's 1lift deficiency
function for harmonic loadings3. On the otber
hand, Eq. (13) produces a lift deficiency factor

€= — (16)

which is higher than that given in Eq. (15).

The two perturbation inflow models, used in
the present analysis, can be written in a general
form as

C, A 0 ch -CMy

= an
0 G}y Ms Cux) v.A

when C; = 0,5.Fq. (17) corresponds to Eq, (11) and
when C; = 1.0 it corresponds to Eq. (13),

The concept of equivalent Lock number in the
coupled rotor/fuselage type problems appears to
involve a certain inconsistency. The fuselage
equations of motion in pitch and roll contain terms
due to both aerodynamic hub moments and aerodynamic
hub forces. When using the perturbation inflow,
one can make the observatioa that only the Lock
number associated with the aerolynamic moment terms
is modified, however the Lock number associated
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with the aerodynamic force terms remains unchanged,
Of course, the reason for this inconsistency lies
in the formulation of the equations for the inflow
variables which are related only to the hub moments,
as given in Eq. (4).

Dynamic Inflow Models

The perturbation inflow model does not account
for the time lag between the aerodynamic load and
the time variation in inflow, The dynamic inflow
models represent an extension of the perturbation
inflow model by taking intc account the time lag
between the aerodynamic loading and the response.
When using the dynamic inflow model the equations
for A\, and Aj5 can be written as

(18)

M 0

1 N ¢ I 10

0 “1 ils‘ '

where M) represents the nondimensional apparent
inertia associated with the infliow and the quantity
C1 is either 0.5 or 1.0, depending on the definition
of mass flow rate, The value of M; can be obtained
either theoretically or experimentally. Tuckermanl2
evaluated the apparent inertia associated with an
impermeable disk subject to an angular acceleration.
The nondimensional value of the apparent inertia
was foundl? to be My = 0,1132, This theoretical
value is also supported by parameter identification
studlesl0, 1In Ref. 13,1t was noted that Mj can also
be influenced by the pressure distribution on the
rotor and hence M) could be also assumed to be a
function of rotor loading distribution. In Ref.
14, the identified value of M; 1s found to vary
between 0,05 to 0,2, In the present analysis, the
value of M) 1s assumed to be the theoretically
evaluated value {.e., M} = 0,1132. The implication
of using Eq. (18) in rotor dynamic problemsl3

under harmonic loadings, can be shown to be equi-
valent to a modification of the Lock number, which
can be written as

1
16C-,)\0
1+—————-+

ga Oa

Y=y 1- (19)

16M (1&)

-'YC

Equation (19) indicates that addition of an apparent
inertia term to the perturbation inflow model intro-
duces a phase lag between the aerodynamic loads and
the response. Furthermore the value of C is now
different from the previous values given in Eq. (15)
and (16).

The five aerodynamic models, described briefly
above, were selected for incorporation in this
study. Using these theories, the sensitivity of
the aeromechanical stability problem to changes in
the aerodynamic assumptions was investigated. For
convenience, these five aerodynamic models are
concisely summarized below:

Case (a): quasi-steedy aerodynamics

Case (b): perturbation inflow model with C1=0,5

Case (c): dynamic inflow model with C;=0.5 and
M1=0,1132 which corro-pondl to Sohnson's
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model?
Case (d): perturbation inflow model with Cy=1.0
Case (e): dynamic inflow model with C;=1.0 and

Mp=0.1132

These aerodynamic models can also be viewed
as a special case of a general dynamic inflow
model, When M;=0, the general inflow model be-
comes a perturbation inflow model and when Mp + «,
the effects of inflow perturbations are totally
eliminated and the resulting model is a quasi-::eady
aerodynamic model.

3. A Brief Summary of the Experiment

A clear description of the experimental set
up, used for simulating the fundamental aspects of
the aeromechanical stability of a hingeless rotor
helicopter, was presented in Ref, 1. The rotor
cunsisted of three blades and five different con-
figurations were tested. The different configura-
tions represent different blade parameters char-
acterized by the nonrotating natural frequencies
of the blade in flap and layg, pitch-lag coupling
and flap-lag coupling, The rotor was designed
such that most of the blade flexibility is concen-
trated at the root by building in root flexures.
The rotor assembly was supported on a gimbal
which had pitch and roll degrees of freedom. In
this paper the analytical results obtained are com-
pared with the experimental results, presented by
Bousman, for rotor configurations 1 and 4, where
the designation of these configurations is consist-
ent with those in Bousman's paperl. A brief
description of these configurations is presented
for the sake of completeness, additional informa-
tion can be found in Refs. 1, 2 and 7, Configura-
tion 1 had different stiffnesses in flap and lag
respectively; the corresponding nonrotating flap
frequency was 3.13 Hz and that for lead-lag was
6./0 Hz, Configuration 4 was a matched stiffness
case where the nonrotating flap frequency was 6,63
Hz and that for lead-lag was 6.73 Hz, The pitch~
flap and pitch-lag coupling for these two config-
urations was zero., For cases where the pitch
angle was nonzero, the experimental rotor was
desjgned such that pitch changes were introduced
outboard of the flexures and therefore the struc-
tural flap-lag coupling for these cases was zero,
The blade was also designed to be very stiff in
torsion.

4, Method of Solution

The degrees of freedom considered in this
aeromechanical stability analysis are: the funda-
mental flap and lag modes of the blade and the
pitch and roll degrees of freedem of the body. In
this class of problems, it has been established
that the collective flap and lag modes do not
couple with the body motion and thus, these modes
are not considered. Since the inflow variable )
also has the role of a collective mode, it need
not be considered, Therefore, the total number of
degrees of freedom governing the aeromechanical
problem are six. They are: cyclic flap (By.,B1g),
cyclic lead-lag (51m,615), body pitch (6) and
body roll (¢). Fov the cases when the dynamic
inflow mocels are used, two additional degrees of
freedom, namely A]c and Ay,, are also present in
the problem,
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The solution of the coupled rotor/fuselage
problem follows essentially the procedure outlined
in Refs. 6 and 7. The procedure for obtaining the
stability boundaries of the system consists of the
following steps.

1. Evaluation of the equilibrium position of theblade.

2. Linearization of the nonlinear equatlons of
motion about the equilibrium position.

3. Transformation of the linearized equations with
periodic coefficients to equations with constant
coefficients by using a multiblade coordinate
transformation.

4, Evaluation of the eigenvalues of the linearized
system with constant coefficients to obtain the
stability boundaries.

The eigenvalues appear in complex conjugate
pairs, 8 = 0+ iw. The real part of the eigenvalue
represents the modal damping and the imaginary par=
modal frequency, respectively. The mode is stable
if 0 1s negative and it is unstable if 0 18 posi-
tive.

In the present problem, the number of complex
eigenvalue pairs depends on the type of aerodynamic
model used in the analysis. When quasi-steady
aerodynamics or the perturbation infiow mcdels are
used, there are only six pairs of complex eigen-
values, each one representing cne of the six degrees
of freedom, namely, Bj., B1g, {1c» D1, O and ¢.
The modes corresponding to the rotor degrees of
freedom (By., By, G1c» G)g) are referred to either
progressing or regressing mode depending on the
numerical value of the rotating natural frequency.
A more detailed description of this terminology
can be found in Refs. 3 and 7, When the dynamic
infiow model is used, the six eigenvalue pairs are
augumented by one additional pair of eigenvalues
corresponding to the inflow variables. Since the
equations for the inflow variables Aj. and Xj5 are
given in first order state variable form, Eq. (18)
the stability analysis will yield only one pair of
eigenvalue corresponding to these two inflow vari-
ables. The mode corresponding to this eigenvalue
pair is designated as the "inflow mode", (1),
following Johnson's2 terminology.

5. Results and Discussion

In the present study, aimed at predicting the
aeromechanical stability of a model helicopter, the
behavior of the model is studied at various values
of rotor speed Q. Two rotor configurations are
analyzed. Configuration 1, in which the nonrotating
flap frequency is lower than the nonrotating lag
frequency, and configuiation 4, in which these two
frequencies are almost equal, which corresponds to
a matched stiffness configuration. These different
configurations have an influence on the dynamic
behavior of the coupled rotor/fuselage system. In
a matched stiffness configuration the structural
flap-lag coupling is eliminated, Furthermore the
oot torsional moment due to the combined flap-lag
motion, which is somewhat similar to an effective
flap-pitch and lag-pitch coupling, is also elimin-
ated. It should be mentioned however that these
effective flap-pitch and lag-pitch couplings are not
structural couplings, It was mentioned in the
previcus section that the experimental model was
designed so as to eliminate structural flap-lag
coupling, for these configurations. Therefore, the
difference between these two configurations con-
sists of the root torsional moment due to combined
flap-lag motion which is present in configuration 1

21

[N S obid s o ik P o sy

and absent in configuration 4, This root moment
acts as an exciting moment for the body pitch and
roll motions.

The numerical data used in the analysis is
presented in the Appendix, It should be mentioned
that the roll inertia used in the present calcu-
lations 1is slightly higher than the valve
(183 gmem?) provided in Ref. 1. The value for roll
inertia used in our calculation is 194 gm.m“ which
is 6% higher than 183 gm-.m2, This value of roll
inertia was obtained by using the body spring
stiffness in roll, provided by Bousmanlﬁ, such that
the calculated nonrotating coupled roll frequency
matches the measured frequency.

5.1 Results for Configuration 1

The results for Configuration 1 are presented
in Figs. 1-8, The variation of varicus modal fre-
quencies with {2 are shown in Figs. 1-2, together
with the experimental data, taken from Ref., 1. It
can be seen from Fig. 1 that the analysis with
quasi-steady aerodynamics predicts the modal fre-
quencies which are in excellent agreement with
the experimental results, Figure 2 presents the
calculated modal frequencies for Case (b), pertur-
bation inflow with C1=0.5, and Case (c) dynamic
inflow model with C1=0.5 and M1=0.1132, With the
perturbation inflow model, the predicted frequen-
cies for roll (¢) and pitch (8) are over estimated
in the range i > 300 R.P.M.. On the otherhand,
by incorporating a time delay in the inflow model,
Cage (c), the calculated pitch and roll frequencies
are in good agreement with the measured values.
However, the predicted pitch frequency 1is still
slightly higher in the range i3 > 300 R.P.M, A
similar trend was also observed in the results for
Case (d), perturbation inflow model, with C1=1.0,
and Case (e) dynamic inflow model with Cj=1.0 and
M1=0.1132,

It was mentioned esrlier that the analysis
with dynamic inflow model produces an additional
eigenvalue corresponding to the inflow mode (%),
For Case (c), there are two eigenvalues with
frequencies below 0,6 Hz in the range { > 200 R,P.M,
as evident from Fig. 2. The frequency correspond=
ing to one mode remains almost constant (=0.5 Hz),
while the other decreases to zero and then increas-
es, It is difficult to identify which one of
these two corresponds to the flap regressing mode
(Br) and which one should be associated with the
inflow mode (A). The mode with the constant fre-
quency, in Fig. 2, is identified as inflow mode
(A) and the other mode is identified as flap re-
gressing mode (BR). Johnson? also identified the
mode with a constant frequency as inflow mode (1)
and the second mode as flap regressing mode (Bg).
Some additional comments on this identification
procedure will be made later,

Figure 3 presents the variation of damping in
flap regressing mode (Br) and inflow mod: (1) with
. It is evident from Fig, 3 that the damping in
the flap regressing mode increases rapidly with
Q for the analysis with quasi-steady aerodynamics.
The introduction of the perturbation inflow model
with C3=0,5, Case (b), drastically reduces the
damping in fp mode. This reduction in damping 1is
caused by recuced aerodynamic damping with pertur-
bation inflow, For this case the relevant
quantities are: solidity ratio & = 0,0494; 1lift
curve slope a = 5,73 and steady inflow Ag=0,014,

1
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Therefore the deficicncy function C, based on Eq.
(15), is C=C.284, Hence, the effective Lock number
y*=0,284y. This shows that perturbation inflow
reduces the magnitude of aerodynamic forces by
approximately 72%. 1In the case of dynamic inflow
with Cy=0,5 and M;=0,1132, Case (c), the damping

in the mode which is identified as the inflow mode
(A) remains relatively low, but the damping i(n

flap regressing mode (Bg) increases with 2. These
results indicate that the damping in flap regress-
ing mode reverts to the value obtained in the
analysis with quasi-steady aerodynamics, as a con-
sequence of the time delay present in dynamic inflow
model., This seems to contradict the earlier results
published in Refs. 9, 10 and 17, It was mentioned
in Ref. 17 that flap regressing mode damping is
substantially decreased by dynamic inflow for small
values of collective pitch setting of the blade,
Furthermore, it was found in Ref. 10 that dynamic
inflow reduces the damping in flap regressing mode.
This raises & question whether the inflow mode
identified in Fig. 2, and also identified as such
by Johnson?, is a flap regressing mode and the mode
identified as the flap regressing mode is really

an inflow mode. To ascertain the reliability of
this identification procedure, the eigenvectors
corresponding to these modes were also analyzed,
Table I shows the eigenvectors corresponding to

the mode identified as the flap regressing (Bg) and
the inflow mode (1) at & = 900 R.P,M. It can be
seen that in the flap regressing mode, the flap
motinn has a higher participation factor than the
inflow variables. In the inflow mode, the flap and
inflow variables have almost equal participation
factor, Also in this () mode, the pitch and roll
motions have substantial participation factors.
However, from these results, one can conclude that
the flap regressing mode and inflow mode are highly
coupled modes.

Figures 4 and 5 illustrate the variations of
damping in pitch as a function of . Using quasi-
steady aerodynamics, a higher damping, in the range
200 < f < 800 R.P.M, is predicted as evident from
Fig. 4. However when dynamic inflow, Case (¢),
with ¢1=0.5 and M;=0.1132 is used the damping is
pred.cted very well in the range 200 < Q < 800
R.P.M., however the damping is somewhat under pre-
dicted beyond & = 800 R,P.M. Figure 5 shows that
using the dynamic inflow model, Case (e) with
C1=1.0 and M3~0,1'32, the damping predictions are
in very good agre nt with the experimental results
over the complete range of {i. When the value of
C1 is inc-eased from 0.5 to 1.0, in the dynamic in-
flow models, one finds that the corresponding damp-
ing in pitch increases by 10X ~ 25X for Q > 400
R.P.M. It is also evident from Figs. 4-5 that
perturbation inflow models do not seem to predict
the correct damping Jevels,

The variation of damping in roll mode is shown
in Figs. 6-7. When using quasi-steady aerodynamics,
the damping, in the range of @ > 500 R,P.M,, is
over predicted as evideunt from Fig. 6, Using the
perturbation inflow model, with C3=0,5, Case (b),
the damping in the range of Q& < 600 R,P.M, is under
estimated, beyond this range of 2, the predictions
are good, The damping levels predicted using the
dynamic inflow model, with C1=»0.5 and M1=0,1132,
Case (c), are in good agreement with experimental
date over the whole range of (I, as shown in Fig, 6,
It can be seen from Fig., 7 that calculations with
the psrturbation inflow model, with C}=1,0, Case
(d), yield damping lavels which are too low in the

range < 500 R.P.M. and too high for the range
Q > 600 R.P.M, Calculations with the dynamic in-
flcw model, with €1=1.0 and M1=0.1132, Case (e),
alsc overpredict the damping in the range Q > 700
R.P.M. It should be mentioned, that in the range
@ > 700 R.P.M., when using dynamic inflow models,
the percentage increase in roll damping as a re-
sult of increasing C; from 0.5 to 1.0 is 5% to 12%.

Rased on the results obtained for the damping
in the pitch and roll modes, it appears that the
theoretical results are quite sensitive to the
value selected for Cj. It is also evident that
introduction of a time delay in the inflow model
seems to be an important factor. Based on the over
all agreement with the experimental data, it ap-
pears that the dynamic inflow model with Cy=0.5
and M}=0.1132, Case (c), seems to be somewhat
superior to the dynamic inflow model with Cy=1.0
and M1=0.1132, Case (e).

Figure 8 presents the variation of regressing
lag mode damping with 2. The predicted damping
levels are in good agreement with the experimental
results in the range Q < 700 R.P.M. and Q > 900
R.P.M. for all the aerodynamic models used., For the
cases analyzed with perturbation inflow models,
Case (b) with C;=0.5 and Case (d) with C;=1.0, the
value of { at wﬁich the resonant peak occurs is
shifted from 760 R.P.M. to 800 R.P.M. This shift
is associated with the fact that when using both
models the roll frequency predicted is higher than
the experimental result and as a consequerce, the
resonance is also shifted to a higher value of Q.
Calculations with quasi-steidy aerodynamics predict
correctly the value of  at which resonance occurs,
however the stability of this mode is overpredicted
In the analyzes with dynamic inflow models, the
predicted damping levels are in excellent agreement
with the experimental results, including the damp-
ing at resonance. The level of agreement with
experimental data found in this case 1s somewhat
be.ter than those shown in Refs. 1 and 2. This
result seems to support the statement macde in Ref.
7, that the coupled rotor/fuselage inodel derived
in Ref. 5 is a reasonably accurate model for the
configuration tested in Ref. 1.

5.2 Results for Configuration 4

The results for Configuration 4 are preseuted
in Figs. 9-16, Figures 9 and 10 show the variation
of modal frequencies as a function of 2. It can
be seen from Fig. 9 that all the frequencies except
the one corresponding to 0.7 Hz are predicted well
by the quasi-steady aerodynamic model. 1In the
range 250< Q<350 R.P,M., the pitch, roll and flap
regressing modes undergo a change in their charact-
eristics. The flap regressing mode (BR) becomes
e roll mode (¢) and roll mode (¢) becomes a pitch
mode (9) and the pitch mode (6) becomes a flap
regressing mode (BR). In this range of i, the pre-
dicted roll frequencies are higher than the measur=-
ed values. Quasi-steady aerodynamics is incapable
of predicting a frequency close to 0.7 Hz in the
range 300< Q< 1000 R,P.M. Figure 10 illustrates
the results for the cases where the perturbation
inflow model, Case (b) with Cy=0.5 and dynamic
inflow model, Case (c), with Cy=0.5 and M]=0.1132,
were used. Although calculations based on the
perturbation inflow model are capable of predicting
a frequency close to the exparimentally measured
frequency of 0.7 Hz, the pitch and roll modes
frequencies are overpredicted. With dynamic inflow
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model, all the frequencies are predicted well.
However, in the range 250< {2 <350 R.P.M., the roll
mode frequency 1s still overpredict d. In this
range of {), none of the aerodynamic models used in
the present study, is capable of gorrectly predict-
ing the roll frequency, Johnsonl® attributed this
discrepancy to either the aeficiency of the aero-
dynamic model or the presence of some higher mode
of the rotor or body. In any case, this problem
remains unresolved, In the range 2 > 400 R.P.M., the
mode with a frequency close to 0.7 Hz is identified
as inflow mode (A) and the other mode with a fre-
quency which is lower than 0.7 Hz is identified as
flap regressing mode (Bg). This identification is
based on the analysis of the eigenvectors correspond-
ing to these two modes. Table II shows the eigen-
vectors of the identified inflow mode and flap
regressing mode, for @ = 900 R.P.M. In this case,
as in Configuration 1, these two modes are highly
coupled. However, in the mode, the flap
mction has a higher participation factor than the
participation of the inflow variables. In the A
mode, the body pitch has the highest participation
factor, with the flap, body roll and inflow having
almost equal participation factors. As a result

of this identification procedure one finds that
using the dynamic inflow model the damping for the
flap regressing mode is predicted to have a value
couparable to that obtained when using quasi-steady
aerodynamics. This seems to contradict some
results which have been published earlier in Refs.
9, 10 and 17 where it was found that using dynamic
inflow yields a substantial reduction in regressing
flap mode damping.

The variation of roll damping as a function of
i is illustrated in Figs, 11-12, Calculations
based on quasi-steady aerodynamics overpredict the
damping in the range ! > 300 R.PM., as evident in
Fig. 11. Calculations based on the perturbation
inflow model, with C;=0.5, under predicts the damp-
ing in the range 2 < 800 R.P.M. The damping levels
predicted by using the dynamic inflow model, with
C1=0.5 and M;=0.1132, are in reasonesble agreement
with the experimental values. From Fig. 12, it
is evident that using the perturbation inflow model
with Cy=1.0, yields a damping prediction which is
too high for £ > 700 R.P.M. Using the dynamic in-
flow model, with Cj=1.0 and M;=0.1132, yields damp-
ing level predictions which are in reasonable agree-
ment with the experimental results.

The variation of damping for the pitch mode
(8) and the mode which has beea identified as the
inflow mode ()\) are presented in Figs. 13 and 14,
It is evident from Fig. 13 that predictions based
on quasi-steady aerodynamics yield higher values
of damping than the measured valuzs, Calculations
based on dynamic inflow, with C)=0.5 and M;=0.1132,
predict the pitch damping well, but the damning
assoclated with the inflow mode (1) is lower ihan
the experimenta. values. Figure 14 shows thiat
using the dynamic inflow model, with Cy=1.0 and
M=0.1132, yields a higher value of pitch damping
than measured in the test. The damping in inflow
mode 1s also higher than the experimental values.
From the results shown in Figs. 13 and 14, it is
evident that an increase in the value of C; from
0.5 to 1.0 increases the pitch mode damping by
about 25%. Therefore, it can be concluded that for
Configuration 4, as well as Configuration 1, the
predicted damping .evelr in pitch and roll modes
are quite sensitive to the dynamic inflow model
used in the analysis. By using a different
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c:mbination of the values of C; and Mj, bettar cor-
reletion wil™ the experimental results could have
been schieven, However, smong the aerodyramic
models emp”.yed in the present study, the dynamic
inzlew with €1=0.¢ and ¥;=0.1132, Case (c),
yilelie ..er agreement with tae «xperimental
resulnc than the other aerody.emic models.

The variacion of lag regressing mode damping
with { is shown in Fig. 15. The resonant frequency
obtained . ‘b tue perturbatior 1inrlow models ex~-
hibits a si:"7t t a higher value of Q than the one
observed ian % experiment. Calculations based
quasi-steady acrodviamics predict the damping
levels an? the rescvuant froqueney very we'l, o
the mode is more scable at roserance, than the
stability indicated in tnc test. <alculation-
with the dynamic inflow models yield r2-ults ‘- ui-.
are in excellent sgreement with the experimen. v
data,

Figure 16 shéws the variation of regresesirg 'ag
mode damping as a function of colleccive pitcn
setting of the blade, at { = 1000 R.P.M, Calcu-
lations with the dynamic inflow model, using
C1=0.5 and M1=0,1132, yields damping values which

are in very good agreement with the measured values.

6., Conclusions

The aeromechanical stability of a helicopter
in ground resonance is analyzed, using five differ-
ent aerodynamic models and the analytical results
are compared with the experimental results. Based
on the comparison, the following conclusions can
be drawn:

(1) For the aeromechanical stability problem
studied here, .he perturbation inflow models do
not predict correctly the modal frequencies and
damping.,

{2) Quasi-steady aerodynamics predicts the modal
frequencies very well for Configuration 1, but is
incapable of predicting a frequency of 0.7 Hz
measured in the experiment, for Configuration 4.
The Jdamping in body roll and pitch modes are over
predicied. The regressing lag mwocCe damping ie
predicted well.

(3) The dy-amic inflow models predict the modal
frequencies and damping values which are in very
good cgreement with the experimental results,

This implies tha: for the present problem the time
lag is an important ingredient in the dynamic in-
flow model.

(4) The predicted damping levels for the lag re-
gressing mode, using dynamic inflow mudels, are in
excellent agreement with the experinental results
including the value at resonance. Tnis indicates
that the mathematical model for the coupled rotor’
juselage system is accurate.

(5) From the cases studied with dynamic infiow
nodels, it is evident that the predicted damping
levels for the body modes, increase when C1 is
increaged from 0.5, Case (c), to 1,0, Case (e).
For both rotor configurations, the pitch damping
increases by 10% to 25% and the roll damping in-
creases by 5% to 12X,

(6) Based on the cumparison of results obtained
with various aerodynamic models, it seems that the
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dynamic inflow model with Cy=0.5 and M;=0.1132 {is
the most suitable aerodynamic model, for the speci~
fic aeromechanical problem studied in this paper,

(7) Identification of the flap regressing mode

and the inflow mode proved itself to be quite
complice ed. These modes were identified by using
the frequency information together wi "1 a careful
examination of the eigenvectors, The vresults based
on this identification procedure seem to indicate
that when ucing the dynamic inflow model the pre-
dicted values cf damping for the regressing flap
mode are comparable to those obtained with quasi-
steady aerodynamics,
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Appendir
Rotor Geometry
Number of blades 3
Radius, cm 81.1
Chord, cm 4,19
Hinge offset, cm 8,51
Blade Airfoil NACA 23012
Profile drag coefficient 0.0079
Lock rumber 7.37
Solidity ratio 0,0494
Lift cu.ve slope 5.73

Height of rotor hub above gimbil,cm 24,1

Blade Mass Properties

Blade mass (to flap flexures), gm 209

Bl.de mass centroid (Ref. flexure
ceaterline), cm 18.6

Blade flap inertia_(Ref. flexure
centerline), gm.m 17.3

Blade Frequency and Damping

Conr. 1 Conf., &4

Nonrotating Flap frequency, Hz 3.13 6,63
Nonrotsting Lag frequency, Mz 6,70 6,73
Damping in lead-lag (X critical) 0,52%X 0,53%

Body Mass Properties

Rotary inertia in pitch, gm-mz 633
Rotary inertia in roll, gm.m? 194

Body Stiffness and Dampin;

Pitch stiffness, 3m~c’2/uec2-r|d 0.8687x10:
Roll stiffness, gmeen‘/secl.rad 0.1113x10
Danping in roll (X critical) 0.929%
Damping in pitch (% critical) 3,202
Pitch frequency, Hr 1,86

Roll frequency, Hz 3.81
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X .
. Table i. Eigenvectors of Flap Regrassing (Bg) and ‘
| Inflow () modes at 7 = 900 R.P.M. :
5 for Configuration 1 .
? .
) 3
! .
i Degrec of Flap Regressing mode Inflow i
i freedom [} mode
\ R A .
}
Bl 1.000 . 989 ; i
1s .593 1.000
;1(: .012 .020 .
1
Els .030 .020 i
¢ .072 .563 i
Fig. 1 Modal Frequencies as a Function of Q;9C=0; ! :
8 .034 .718 Configuration 1
LR 475 779 :
ic !
>‘1$ .377 .765
Table If. Eigenvectors of Flap Regressing (Br) and
Inflow (1) modes at = 900 R,P.M frr
i Configuration 4 ,
1 o
_5 ip DYNAMIC INFLOW, Cy » 0.5, My = 0.1132 (
Degree of Flap Regressing mode Inflow 0r- —=== PERTURBATION INFLOW, C, = 0.5
freedom BR mode 0 0O EXPERIMENT (Ref. 1} ]
K H ;‘;
| ‘3
B¢ .584 .763 i, :
L T
Big 1.000 .785 : .
.0 10
Clc 33 w, Mz ‘ !
"
4s .023 .013 :
¢ .166 . 745 ’
1
! 8 .050 1.000 ! .;
! . ¢
i A 426 .619 i .
E 1c !
s Als .545 .592 .
!
Fig. 2 Modal Frequencies as a Function of Q;GC-O;
Tonfiguration 1
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Fig. 3 Variation of Damping in Regressing Flap
Mode and Inflow Mode with n;ec-o;
Conf iguration 1

O  EXPERIMENT (Ref. 1}
—e— PERTURBATION INFLOW, Cy = 0.5
———— QUASISTEADY AERODYNAMICS
—=—= DYNAMIC INFLOW, Cy ~ 0.5, My = 0.1132

{1, RP.M.

Fig. 4 Body Pitch Mode Damping as a Function of Q;
8.=0; Configuration 1

2] EXPERIMENT (Ref. 1.
—o= PERTURBATICN INFLOW, Cy = 1.0
s~ DYNAMIC INFLOW, Cy = 1.0, My = 0.1132

o, we™

{1, R.P.M.

Fig. 5 Body Pitch Mode Damping as a Function of Q;
ec-o; Configuration 1
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Fig. 6 Body Roll Mode Damping as a Function of ;
ec-o; Configuration 1
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Fig. 7 Body Roll Mode Damping as a Function of {;
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Fig. 8 Regressing Lag Mcde Damping as a Function
of 9c-0; Configuration 1
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Fig. 9 Variation of Modal Frequencies with Q;
ec-o; Configuration &4

PERTUPBATION INFLOY, Cy = 0.5
CP === DYNAMIC INFLOW, Cy = 0.5, My = 0.1132
0004 EXPERIMENT (Ref. 1)
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Fig. 10 Variation of Modal Frequencies with Q;
GC-O; Configuration 4
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Fig. 11 Variation of Roll Mode Damping with ;
GC-O; Configuration 4
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Fig. 12 Variation of Roll Mode Damping wirh Q;
BC-O; Configuration 4
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DISCUSSION
Paper No. 14

INFLUENCE OF VARIOUS UNSTEADY AERODYNAMIC MODELS ON THE AEROMECHANICAL STABILITY
OF A HELICOPTER IN GROUND RESONANCE
P. ~. Friedmann
and
C. Venkatesan

Bill Bousman, U.S. Army Aeromechanics Laboratoury: Jack Landgrebe put a perspective on dynamie
inflow as not really contributing to the 'vads problem and I think that the conclusions from the
first two papers show that although it has a strong effect on the flapping degree of freedom,
from t1e designer's point of view, it is not really important for the lag degree of freedom. I
guess my Jue-tion is to all three of these guys. Are there applications for dynamic inflow in
something like the handling qualities area where simulation needs the speed of the model and has
any work been done in here or are there paths that we should be going?

Fr. »dmnn: 1'll tell you I was expecting this question so I have a slide. "Can I have the
slide, please?" The last slide [Fig. 3] is something which in your experiment you might have
data, but it wasn't in your paper so I don't know whether you have data or not. It shows the
flap cregressing mode damping with various kinds of aerodynamics. What it really shows you is
that the damping with quasisteady aerodynamics is here. If you put in the perturbation inflow
it knocks down this damping in the flap mode very significantly. And when you put in the
dynamic inflow with C, of 0.5 it brings it up again to almost where the damping was with the
quasisteady aerodynamics. You can also see how the damping of inr'low mode changes as a function
of 2. So in relation to the first gquestion which you have as«ed I think that the better test
for how mucn global t-uth is in dynamic inflow should really be based on the behavior of the
flapping wode as has teen indicated by both Dave Peters ancd [Gopal] Gaonkar. Maybe in the
future some calculatiois associated with that type of exam.nation could be revealing.

Dave Peters, Washington University: On the §:iestion about handling qualities, I think it
definitely has an effect. There was one figure in the paper we didn't show which shows the
piteh and roll moment on the rotor due to a roll osciilation or a pitch oscillation. As you go
to an w of zero the slope of that curve then is the roll rate or pitch rate moment as a
function of 8, or 8., like a control derivative. There's more than a factor of two
difference wltg or uitﬁout dynamic inflow; almost a factor of three in one case. I think if you
are going to do handlirg qualities, anything in the less than once per frequency range then the
dynamic inflow i: going to have importance. That's a great paper, Peretz. [ think we snould
have an altar cill and everyone who wants to put dynamic inflow in their analysis should come
forward or something after a paper like that because it's really good. One question I had--on a
model like yours, how much extra complexity does it take to put the dynamic inflow in? 1Is it 2%
or 1087 Maybe you can give us a feeling for that.

Friedmann: It may be 10% additional work. It's not really very difficult to do. Particularly
if you have somebody as good as Venkatesan who does it.

Bob Loewy, Rensselaer Polytechnic Institute: My question pertains to the off-diagonal terms in
the L matrix and really takes up a little bit on Euan Hooper's earlier question on the earlier
paper. And that is it seems to me that swirl would make those kind of terms nonzero and that
particularly in tilt rotors and high speed forward flight you would expect more swirl than we
are used to. I wonder if you have thought about these things?

Friedmann: I have to phrase this very carefully. [ am essentially somebody who uses dynamic
inflow. I am not a person who has ambitions of Iimproving dynamic inflow. I am a believer in
unsteady aerodynamics and as a consequence you might be aware a year ago one of my students
completed an arbitrary motion type of unsteady airfoil theory in which you can essentially do
the same things you do with dynamic inflow, but for hover and forward flight. It is based on
essentially an assumed wake. [It has] all the mathematical complexities and maybe mathematical
fundamentals which an unsteady aerodynamics theory provides you and you don't have to use the
assumptions which are embedded in dynamic inflow and cannot be removed. We have used this
particular arbitrary motion theory to essentially extend the so-called Loewy lift deficiency
function, which you might be familiar with, to arbitrary motions. In that AIAA paper which was
given last year we have not been very successful. But since then Dr. Venkatesan has managed to
do an arbitrary motion approximation to the theory and that theory can probably be used to
capture the same behavior which is predicted by the dynamic inflow model and you might be able
to see whether based on such 8 theory you do get off-diagonal terms or not.
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